小学求梯形面积问题
梯形ABCD的两条对角线AC和BD相交于O点,已知三角形ABO和三角形BCO的面积分别是10平方厘米,15平方厘米,求梯形ABCD的面积是多少平方厘米?标准答案是62.5...
梯形ABCD的两条对角线AC和BD相交于O点,已知三角形ABO 和三角形BCO 的面积分别是10平方厘米,15平方厘米,求梯形ABCD 的面积是多少平方厘米?
标准答案是62.5,请各位帮忙写个详细过程 展开
标准答案是62.5,请各位帮忙写个详细过程 展开
展开全部
因为ABCD为梯形,AD//BC,所以△ABC与△DBC等底等高,面积相等。
所以,S面积△DOC = S面积△DBC - S面积△BOC
= S面积△ABC - S面积△BOC = S面积△ABO = 10 。
S面积△ABO=10,S面积△BCO=15。
将这两个三角形看作以AC为底边,B到AC的距离为高的话,那么两个三角形等高,
所以 AO : OC = S面积△ABO : S面积△BCO = 10 : 15 = 2 : 3 。
同样,将△AOD和△DOC,看作以AC为底边,D到AC的距离为高的话,那么两个三角形等高,
所以 AO : OC = S面积△ADO : S面积△DOC,
先前计算已得 AO : OC = 2 : 3 ,S面积△DOC = 10,
则可计算出 S面积△ADO = 10*2/3 = 6.67
所以梯形面积为 S面积△DOC + S面积△ADO + S面积△ABO + S面积△BCO
= 10 + 6.67 + 10 +15
= 41.67 (平方厘米)
(标准答案62.5是错的。如果题目中已知的两个三角形面积10和15平方厘米,反一下,为15和10平方厘米的话,那么答案才是62.5。)
所以,S面积△DOC = S面积△DBC - S面积△BOC
= S面积△ABC - S面积△BOC = S面积△ABO = 10 。
S面积△ABO=10,S面积△BCO=15。
将这两个三角形看作以AC为底边,B到AC的距离为高的话,那么两个三角形等高,
所以 AO : OC = S面积△ABO : S面积△BCO = 10 : 15 = 2 : 3 。
同样,将△AOD和△DOC,看作以AC为底边,D到AC的距离为高的话,那么两个三角形等高,
所以 AO : OC = S面积△ADO : S面积△DOC,
先前计算已得 AO : OC = 2 : 3 ,S面积△DOC = 10,
则可计算出 S面积△ADO = 10*2/3 = 6.67
所以梯形面积为 S面积△DOC + S面积△ADO + S面积△ABO + S面积△BCO
= 10 + 6.67 + 10 +15
= 41.67 (平方厘米)
(标准答案62.5是错的。如果题目中已知的两个三角形面积10和15平方厘米,反一下,为15和10平方厘米的话,那么答案才是62.5。)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询