高数数列极限的证明
X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会但是途中画圈的那个不等式的证明部分是怎么得出来的我不懂...
X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限
求极限我会
但是途中画圈的那个不等式的证明部分是怎么得出来的我不懂 展开
求极限我会
但是途中画圈的那个不等式的证明部分是怎么得出来的我不懂 展开
1个回答
展开全部
|Xn+1-A|<|Xn-A|/A
以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ;
|Xn-1-A|<|Xn-2-A|/A;
……
|X2-A|<|X1-A|/A;
向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)
以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ;
|Xn-1-A|<|Xn-2-A|/A;
……
|X2-A|<|X1-A|/A;
向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询