根号2是无理数,怎么证明
4个回答
展开全部
假设根号2是有理数
有理数可以写成一个最简分数
及两个互质的整数相除的形式
即根号2=p/q
pq互质
两边平方
2=p^2/q^2
p^2=2q^2
所以p^2是偶数
则p是偶数
令p=2m
则4m^2=2q^2
q^2=2m^2
同理可得q是偶数
这和pq互质矛盾
所以假设错误
所以根号2是无理数
有理数可以写成一个最简分数
及两个互质的整数相除的形式
即根号2=p/q
pq互质
两边平方
2=p^2/q^2
p^2=2q^2
所以p^2是偶数
则p是偶数
令p=2m
则4m^2=2q^2
q^2=2m^2
同理可得q是偶数
这和pq互质矛盾
所以假设错误
所以根号2是无理数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无理数就是不是有理数的实数,也是无限不循环小数,
根号2=
1.41421356,明白了吧。
根号2=
1.41421356,明白了吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
20190821 数学04
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |