如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么f(1),f(2),f(4)的大小关系

wywywyws
2013-02-12
知道答主
回答量:12
采纳率:0%
帮助的人:3万
展开全部
因为f(2+t)=f(2-t)
t为任意实数,
所以将t=1带入上式得
f(3)=f(1)
所以3*2+3b+c=1*2+b+c
所以b=-4
所以f(2)=4+2x(-4)+c=-4+c
f(1)=1-4+c=-3+c
f(4)=16-16+c=c
即f(4)>f(1)>f(2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尧日雨霏霏t
2011-07-22
知道答主
回答量:18
采纳率:0%
帮助的人:6.9万
展开全部
解:
∵f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t)
∴有f(2+t)=2(2+t)+b(2+t)+c=2(2-t)+b(2-t)+c=f(2-t) 解得b=﹣2
∴f(x)=2x-2x+c=c ∴f(x)=c,是常函数
∴f(1)=f(2)=f(4)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2011-07-22 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
f(1) = 1+b+c
f(3) = 9+2b+c
f(1) = f(3)
1+b +c = 9+2b+c
b = -8
f(2)= 4+2b-8
f(0) = -8
f(2) = f(0)
4+2b-8 = -8
b = -2
f(x) = x^2-2x-8
f(1) = -9
f(2) = -12
f(4) = 0
f(4) > f(1)> f(2)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-07-22
展开全部
f(4)>f(1)>f(2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式