若函数y=log2[ax^2(a-1)x+1/4]的值域为R,求实数a的取值范围
1个回答
展开全部
此函数的值域是R,则g(x)=ax²+(a-1)x+1/4应该与坐标轴有交点且g(x)函数值为非负。。。
1、若a=0,此时g(x)=-x+1/4与x轴有交点,此时f(x)的值域是R,a=0满足;
2、若a≠0,则:①a>0;②△=(a-1)²-a≥0,即:a²-a+1≥0,这个是恒成立的。从而此时a>0
综合下,有:a≥0
1、若a=0,此时g(x)=-x+1/4与x轴有交点,此时f(x)的值域是R,a=0满足;
2、若a≠0,则:①a>0;②△=(a-1)²-a≥0,即:a²-a+1≥0,这个是恒成立的。从而此时a>0
综合下,有:a≥0
追问
函数y=log2[ax^2(a-1)x+1/4]的值域为R不是应该g(x)=ax²+(a-1)x+1/4》0恒成立吗?
追答
不是的。你的错误是将这个题目和另外个题目混淆了。
请看下题:
若函数f(x)=log2[x²-2x+a]的定义域是R,则a的取值范围是什么??
此时就是要保证x²-2x+a>0在R上恒成立。
本题则不然。我们知道f(x)=loga[x]的值域为R的条件是x所能取得的范围一定要比(0,+∞)还要大【好好想想这个!!!!】
从而本题的要求就是要使得g(x)能取得比(0,+∞)还大的区域,即g(x)的值域至少要[0,+∞)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询