P是抛物线C:y=1/2X^2上一点,直线L过点P且与抛物线C交于另一点Q
展开全部
解:
设P点坐标为(x0,1/2x0²)
y‘=x
P点的切线斜率为 x0,则
L方程为y=-(1/x0)(x-x0)+1/2x0²=-(1/x0)x+1+1/2x0²
y=-(1/x0)x+1+1/2x0²和y=1/2X²联立得
X²+(2/x0)x-2-x0²=0,
所以PQ中点M的横坐标为x=-2/x0,得x0=-2/x
代人L的方程得PQ中点M的纵坐标y=(1/2)x0²+1+2/x0²
把x0=-2/x代人得线段PQ中点M的轨迹方程y=(1/2)x²+1+2/x²。
设P点坐标为(x0,1/2x0²)
y‘=x
P点的切线斜率为 x0,则
L方程为y=-(1/x0)(x-x0)+1/2x0²=-(1/x0)x+1+1/2x0²
y=-(1/x0)x+1+1/2x0²和y=1/2X²联立得
X²+(2/x0)x-2-x0²=0,
所以PQ中点M的横坐标为x=-2/x0,得x0=-2/x
代人L的方程得PQ中点M的纵坐标y=(1/2)x0²+1+2/x0²
把x0=-2/x代人得线段PQ中点M的轨迹方程y=(1/2)x²+1+2/x²。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询