1)如图(1),正方形ABCD中,E为边CD上一点,连结AE,过点A 作AF⊥AE交
(1)根据两角互余的关系先求出∠BAF=∠DAE,再由ASA定理可求出△ABF≌△ADE,由全等三角形的性质即可解答;
(2)先根据正方形的性质及AM⊥AC求出AM=AC,∠AMF=∠ACB=45°,再由△ABF≌△ADE及三角形内角和定理可求出∠MAF=∠CAE,再由SAS定理求出△AMF≌△ACE,即CE=MF;
(3)①画出示意图,只要求出△ABE≌△ADF,再根据此条件求出四边形AECF是正方形即可;
②根据题意画出示意图即可,此时正方形的面积等于两块涂料面积的和.
解答:解:(1)∵∠BAF+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠BAF=∠DAE,
∵AB=AD,∠ADE=∠ABF,
∴△ABF≌△ADE(ASA),
∴AE=AF.
(2)CE=MF.
∵四边形ABCD是正方形,
∴∠AMF=∠ACB=45°,AM=AC,
∵△ABF≌△ADE,
∴∠FAB+∠ABF=∠DAE+∠AED,即∠AFB=∠AEC,
∴∠MAF=∠EAC,
∴△AMF≌△ACE,
∴CE=MF.
(3)把△ABE切下,拼到△ADF的位置,
∵AB=AD,∠BAE+∠DAE=∠DAF+∠DAE,
∴∠BAE=∠DAF,
∵∠AEB=∠AFD=90°,
∴∠ABE=∠ADF,
∴△ABE≌△ADF,
∵AE=AD=CE,∠AEC=∠ECF=∠AFC=90°,
∴四边形AECF是正方形.
解:(1)∵∠BAF+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠BAF=∠DAE,
∵AB=AD,∠ADE=∠ABF,
∴△ABF≌△ADE(ASA),
∴AE=AF.(5分)
(2)CE=MF.(7分)
∵四边形ABCD是正方形,
∴∠AMF=∠ACB=45°,AM=AC,
∵△ABF≌△ADE,
∴∠FAB+∠ABF=∠DAE+∠AED,即∠AFB=∠AEC,
∴∠MAF=∠EAC,
∴△AMF≌△ACE,
∴CE=MF.
(3)①如图所示,把△ABE切下,拼到△ADF的位置,
∵AB=AD,∠BAE+∠DAE=∠DAF+∠DAE,
∴∠BAE=∠DAF,
∵∠AEB=∠AFD=90°,
∴∠ABE=∠ADF,
∴△ABE≌△ADF,
∵AE=AD=CE,∠AEC=∠ECF=∠AFC=90°,
∴四边形AECF是正方形.
②如图4所示,
(2)根据(1)中AE=AF,易证:AMF≌△ACE。所以CE=MF。
其他题目没图,没法做。