求∫ln(1-x)/xdx在0到1的定积分。 10
展开全部
容易证明,该广义积分收敛,那么就可以用无穷级数展开
ln(1-x)=-x-x^2/2-x^3/3-x^4/4-……
ln(1-x)/x=-1-x/2-x^2/3-x^3/4-……=-∑[n从0到∞] x^n/(n+1)
∫[0->1] -∑[n从0到∞] x^n/(n+1)=-∑[n从0到∞]x^(n+1)/(n+1)² | [0->1]
=-∑[n从0到∞] 1/(n+1)²
=-(1+1/2²+1/3²+1/4²+……)=-π²/6
而且这是spence function,原式=-Li2(1)=-π²/6
ln(1-x)=-x-x^2/2-x^3/3-x^4/4-……
ln(1-x)/x=-1-x/2-x^2/3-x^3/4-……=-∑[n从0到∞] x^n/(n+1)
∫[0->1] -∑[n从0到∞] x^n/(n+1)=-∑[n从0到∞]x^(n+1)/(n+1)² | [0->1]
=-∑[n从0到∞] 1/(n+1)²
=-(1+1/2²+1/3²+1/4²+……)=-π²/6
而且这是spence function,原式=-Li2(1)=-π²/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询