已知f(x)=in(1+x)-in(1-x),则函数g(x)=f(x/2)+f(1/x)的定义域

衡水老白干001
2011-07-23 · TA获得超过341个赞
知道答主
回答量:106
采纳率:0%
帮助的人:122万
展开全部
f(x)=ln(1+x)-ln(1-x),ln(1+x)与ln(1-x)均有意义,所以对于ln(1+x),x需要大于-1,对于ln(1-x),x需要小于1,二者同时成立取交集,所以f(x)的定义域为x大于-1且小于1,此为1式
f(x)=ln(1+x)-ln(1-x)=ln[(1+x)/(1-x)],带入g(x),
得g(x)=f(x/2)+f(1/x)=ln[(1+x/2)/(1-x/2)]+ln[(1+1/x)/(1-1/x)]=ln[(2+x)/(2-x)]+ln[(x+1)/(x-1)],
ln[(2+x)/(2-x)]与ln[(x+1)/(x-1)]均有意义,所以ln[(2+x)/(2-x)]的定义域为(-2,0)U(0,2),此为2式,这里不取0因为x=0的话f(1/x)无意义,
对于ln[(x+1)/(x-1)],其定义域为(-∞,-1)U(1,+∞),此为3式
1、2、3三式取交集,得g(x)的取值范围为(-2,-1)U(1,2)
dennis_zyp
2011-07-23 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
g(x)=ln(1+x/2)-ln(1-x/2)+ln(1+1/x)-ln(1-1/x)
1+x/2>0, x>-2
1-x/2>0, x<2
1+1/x>0. x>0 or x<-1
1-1/x>0, x>1 or x<0
综合得g(x)定义域 : 1<x<2, or -2<x<-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式