log的计算就是乘方的逆过程。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
计算方式:
根据2^3=8,可得log2 8=3。
扩展资料
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
2024-09-04 广告
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
计算方式:
根据2^3=8,可得log2 8=3。
扩展资料:
推导公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
求导数
(xlogax)'=logax+1/lna
其中,logax中的a为底数,x为真数;
(logax)'=1/xlna
特殊的即a=e时有
(logex)'=(lnx)'=1/x [4]
aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数
它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
拓展资料
对数的定义
如果
,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作
。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1.特别地,我们称以10为底的对数叫做常用对数(common
logarithm),并记为lg。
2.称以无理数e(e=2.71828...)为底的对数称为自然对数(natural
logarithm),并记为ln。
3.零没有对数。
4.在实数范围内,负数无对数。[3] 在复数范围内,负数是有对数的。
事实上,当
,
,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln
5。
aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数
它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
拓展资料:
以下是对数函数运算的公式:
对数——百度百科
那么 log底下一个小的5 右面一个大的25就应该等于2
也就是log底下的小数的 X 次方等于 右边那个大数
logaA=Y (a的Y次方等于A)