在三角形ABC中,a b c分别是角ABC的对边 且cosB/cosC=- b/2a+c 1.求角B的大小 2.若b=根号3 a+c=4 求a的值

谢谢... 谢谢 展开
hxzxlxf
2011-07-24
知道答主
回答量:25
采纳率:0%
帮助的人:8.3万
展开全部
a+c=4
a^2+c^2+2ac=16
a^2+c^2=16-2ac

cosB=-1/2=(a^2+c^2-b^2)/2ac=(16-2ac-13)/2ac
所以
3-2ac=-ac
ac=3
a+c=4
所以a和c是方程x^2-4x+3=0
(x-1)(x-3)=0
所以a=1或a=3
追问
角B是多少啊?
追答
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC) 
所以:2cosBsinA+cosBsinC=-sinBcosC
就有:
2cosBsinA+cosBsinC+sinBcosC
=2cosBsinA+sin(B+C)
=2cosBsinA+sinA
=(2cosB+1)sinA
=0
在三角形ABC中,sinA>0
所以只有:cosB=-1/2
那么:B=120
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式