求三角函数公式大全

权曼语0G9
2011-08-02 · TA获得超过234个赞
知道小有建树答主
回答量:290
采纳率:0%
帮助的人:113万
展开全部
正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x
余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y
sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α

积的 sinα=tanα×cosα cosα=cotα×sinα
tanα=sinα×secα cotα=cosα×cscα
secα=tanα×cscα cscα=secα×cotα

关系

倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1

商的
关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边,正切等于对边比邻边,
·[1]三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式:
Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中
sint=B/(A²+B²)^(1/2)
cost=A/(A²+B²)^(1/2)
tant=B/A
Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
tan(2α)=2tanα/[1-tan²(α)]
·三倍角公式:
sin(3α)=3sinα-4sin³(α)
cos(3α)=4cos³(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1+cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan²(α/2)]
cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=(sinα/2+cosα/2)²
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
等式得证

三角函数的诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)

正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA
角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边
斜边与邻边夹角a
sin=y/r
无论y>x或y≤x
无论a多大多小可以任意大小
正弦的最大值为1 最小值为-
账号已注销ZXCG
高粉答主

2020-04-07 · 说的都是干货,快来关注
知道答主
回答量:8.4万
采纳率:6%
帮助的人:4398万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
35...6@qq.com
2011-07-28
知道答主
回答量:13
采纳率:0%
帮助的人:0
展开全部
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin² α+cos² α=1 tan α *cot α=1
一个特殊公式
(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
100分00
2011-07-24 · TA获得超过122个赞
知道答主
回答量:21
采纳率:0%
帮助的人:11万
展开全部
sin(k·360º + α )= sin α
cos(k · 360º + α)=cos α
tan (k · 360º +α)=tan α
sin ( - α )= - sinα cos ( - α )=cos α tan ( - α)= - tan α
sin (180º+α)= - sinα cos (180º+α)= - cosα tan (180º+α)= tan α
sin (180º - α)= sinα cos (180º - α)= - cosα tan (180º - α)= - tan α
sin(360º - α)= - sinα cos(360º - α)= cosα tan (360º - α)= - tanα
sin(90º + α)= cosα cos(90º + α)= - cosα tan (90º + α)= - cot α
sin(90º - α)= cosα cos(90º - α)= cosα tan (90º - α)= cot α
sin(270º + α)= - cosα cos(270º + α)= sinα tan (270º+ α)= - cot α
sin(270º - α)= - cosα cos(270º - α)= - sinα tan (270º- α)= cot α
在三角形里 sin(A+B)=sin c cos (A+B )= - cos C tan(A+B)= - tan C
sin( A+B) \ 2 = cos C\2 cos( A+B) \ 2 = sin C\2 tan( A+B) \ 2 = cot C\2
a=b· cosC + c · cos B
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友5ac1b57
2011-07-24 · TA获得超过234个赞
知道答主
回答量:27
采纳率:0%
帮助的人:13万
展开全部
sin(k·360º + α )= sin α
cos(k · 360º + α)=cos α
tan (k · 360º +α)=tan α
sin ( - α )= - sinα cos ( - α )=cos α tan ( - α)= - tan α
sin (180º+α)= - sinα cos (180º+α)= - cosα tan (180º+α)= tan α
sin (180º - α)= sinα cos (180º - α)= - cosα tan (180º - α)= - tan α
sin(360º - α)= - sinα cos(360º - α)= cosα tan (360º - α)= - tanα
sin(90º + α)= cosα cos(90º + α)= - cosα tan (90º + α)= - cot α
sin(90º - α)= cosα cos(90º - α)= cosα tan (90º - α)= cot α
sin(270º + α)= - cosα cos(270º + α)= sinα tan (270º+ α)= - cot α
sin(270º - α)= - cosα cos(270º - α)= - sinα tan (270º- α)= cot α
在三角形里 sin(A+B)=sin c cos (A+B )= - cos C tan(A+B)= - tan C
sin( A+B) \ 2 = cos C\2 cos( A+B) \ 2 = sin C\2 tan( A+B) \ 2 = cot C\2
a=b· cosC + c · cos B
呼呼~~~~~~~~ 终于完了 全是我自己打的哦 好辛苦!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式