已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足f(1)=1 f(-1)=0 且对任意实数x都有f(x)
都有f(x)≥x(1)证明a>0c>0(2)设g(x)=f(x)-mx(m∈r)求M的取值使得g(x)在【0,1】上单调那个可以的话解答规范一点...
都有f(x)≥x
(1)证明a>0 c>0 (2)设g(x)=f(x)-mx (m∈r) 求M的取值使得g(x)在【0,1】上单调
那个可以的话 解答规范一点 展开
(1)证明a>0 c>0 (2)设g(x)=f(x)-mx (m∈r) 求M的取值使得g(x)在【0,1】上单调
那个可以的话 解答规范一点 展开
5个回答
展开全部
第(1)小题
f(1)=a+b+c=1
f(-1)=a-b+c=0
两式相减得b=1/2,故有a+c=1/2
f(x)=ax^2+(1/2)x+(1/2 -a)
任意实数x都有f(x)≥x
即ax^2-(1/2)x+(1/2 -a)≥0恒成立
开口向上,与x轴最多一个交点
则有a>0 ,Δ=(1/4)-4a(1/2 -a)≤0
即a>0,(4a-1)^2≤0
所以a=1/4 c=1/4
显然a>0,c>0
第(2)小题
f(x)=(1/4)x^2+(1/2)x+1/4
g(x)=(1/4)x^2+(1/2-m)x+1/4
对称轴为x=2m-1
【0,1】上单调可知
2m-1≤0或2m-1≥1
即m≤1/2或m≥1
f(1)=a+b+c=1
f(-1)=a-b+c=0
两式相减得b=1/2,故有a+c=1/2
f(x)=ax^2+(1/2)x+(1/2 -a)
任意实数x都有f(x)≥x
即ax^2-(1/2)x+(1/2 -a)≥0恒成立
开口向上,与x轴最多一个交点
则有a>0 ,Δ=(1/4)-4a(1/2 -a)≤0
即a>0,(4a-1)^2≤0
所以a=1/4 c=1/4
显然a>0,c>0
第(2)小题
f(x)=(1/4)x^2+(1/2)x+1/4
g(x)=(1/4)x^2+(1/2-m)x+1/4
对称轴为x=2m-1
【0,1】上单调可知
2m-1≤0或2m-1≥1
即m≤1/2或m≥1
展开全部
(1)f(1)=a+b+c=1,
f(-1)=a-b+c=0.
相减得2b=1,b=1/2.
∴a+c=1/2.(1)
对任意实数x都有f(x)>=x,
<==>ax^2-x/2+c>=0,
<==>a>0,且1/4-4ac<=0,(2)
<==>a>0,c>0.
(2)由(1)、(2)式,1/4-4a(1/2-a)=4a^2-2a+1/4=(2a-1/2)^2<=0,
a=1/4=c,
g(x)=(1/4)x^2+(1/2-m)x+1/4在[0,1]上单调,
<==>(m-1/2)/(1/2)<=0,或(m-1/2)/(1/2)>=1,
<==>m<=1/2,或m>=1.
f(-1)=a-b+c=0.
相减得2b=1,b=1/2.
∴a+c=1/2.(1)
对任意实数x都有f(x)>=x,
<==>ax^2-x/2+c>=0,
<==>a>0,且1/4-4ac<=0,(2)
<==>a>0,c>0.
(2)由(1)、(2)式,1/4-4a(1/2-a)=4a^2-2a+1/4=(2a-1/2)^2<=0,
a=1/4=c,
g(x)=(1/4)x^2+(1/2-m)x+1/4在[0,1]上单调,
<==>(m-1/2)/(1/2)<=0,或(m-1/2)/(1/2)>=1,
<==>m<=1/2,或m>=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)对任意实数x都有f(x)≥0,说明该抛物线是开口向上的,故a>0,且b^2-4ac≤0
f(1)=1,则a+b+c=1
f(-1)=0 ,则a-b+c=0
二式相减,得b=1/2。于是4ac≥1/4,ac≥1/16,由于a>0,所以c>0。
(2)g(x)=f(x)-mx =ax^2+(1/2-m)x+c
若g(x)在【0,1】上单调,那么有(m-1/2)/(2a)≥1或(m-1/2)/(2a)≤0
解得m≥1/(2a)+1/2或m≤1/2
f(1)=1,则a+b+c=1
f(-1)=0 ,则a-b+c=0
二式相减,得b=1/2。于是4ac≥1/4,ac≥1/16,由于a>0,所以c>0。
(2)g(x)=f(x)-mx =ax^2+(1/2-m)x+c
若g(x)在【0,1】上单调,那么有(m-1/2)/(2a)≥1或(m-1/2)/(2a)≤0
解得m≥1/(2a)+1/2或m≤1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、由对任意实数x都有f(x)≥x,得a>o且(b-1)^2-4ac<=0
因为(b-1)^2>=0,所以4ac>=0,则c>=0
当c=0时,易b=1由f(1)=a+b+c=1得a=0,矛盾
故c>0
2、f(1)=a+b+c=1,f(-1)=a-b+c=0
解得b=1/2,c=1/2-a 又(b-1)^2-4ac<=0
得ac>=1/16
g(x)=f(x)-mx =ax^2+(1/2-m)x+1/2-a,其对称轴方程为:x=-(1/2-m)/2a
由 g(x)在【0,1】上单调,得
-(1/2-m)/2a<=0或-(1/2-m)/2a>=1
解得m<=1/2或m>=2a-1/2
由a=c=1/2,得1/4-4a(1/2-a)<=0,解得a=1/4 ,此时m>=1
故m<=1/2或m>=1
因为(b-1)^2>=0,所以4ac>=0,则c>=0
当c=0时,易b=1由f(1)=a+b+c=1得a=0,矛盾
故c>0
2、f(1)=a+b+c=1,f(-1)=a-b+c=0
解得b=1/2,c=1/2-a 又(b-1)^2-4ac<=0
得ac>=1/16
g(x)=f(x)-mx =ax^2+(1/2-m)x+1/2-a,其对称轴方程为:x=-(1/2-m)/2a
由 g(x)在【0,1】上单调,得
-(1/2-m)/2a<=0或-(1/2-m)/2a>=1
解得m<=1/2或m>=2a-1/2
由a=c=1/2,得1/4-4a(1/2-a)<=0,解得a=1/4 ,此时m>=1
故m<=1/2或m>=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)f(1)=a+b+c=1,f(-1)=a-b+c=0 两式相加得a+c=1/2,两式相减得b=1/2
对于任意的x,f(x)=ax^2+1/2x+c≥x,即ax^2-1/2x+c≥0 设h(x)=ax^2-1/2x+c,
配方得h(x)=a(x^2-1/4a)-1/16a+c,对于任意的x,若h(x)≥0,(当a=0时,h(x)=-1/2x+c,为直线 不符合≥0条件,所以a≠0)则二次函数h(x)必开口向上,所以a>0
h(x)=a(x^2-1/4a)-1/16a+c的最小值为-1/16a+c≥0,c≥1/16a,而a>0,则c>0
(2)g(x)=f(x)-mx=ax^2+1/2x+c-mx=ax^2+(1/2-m)x+c.若g(x)在[0,1]单调,
则其对称轴x= (m-1/2)/2a不在(0,1)即(m-1/2)/2a≤0或者(m-1/2)/2a≥1
解得m≤1/2或m≥a-1/2,所以m的取值为[a-1/2,1/2]
另外,a>0,c>0,a+c=1/2,所以0<c<1/2
多年没做高中题了,答得不是很规范,自己调整一下吧
对于任意的x,f(x)=ax^2+1/2x+c≥x,即ax^2-1/2x+c≥0 设h(x)=ax^2-1/2x+c,
配方得h(x)=a(x^2-1/4a)-1/16a+c,对于任意的x,若h(x)≥0,(当a=0时,h(x)=-1/2x+c,为直线 不符合≥0条件,所以a≠0)则二次函数h(x)必开口向上,所以a>0
h(x)=a(x^2-1/4a)-1/16a+c的最小值为-1/16a+c≥0,c≥1/16a,而a>0,则c>0
(2)g(x)=f(x)-mx=ax^2+1/2x+c-mx=ax^2+(1/2-m)x+c.若g(x)在[0,1]单调,
则其对称轴x= (m-1/2)/2a不在(0,1)即(m-1/2)/2a≤0或者(m-1/2)/2a≥1
解得m≤1/2或m≥a-1/2,所以m的取值为[a-1/2,1/2]
另外,a>0,c>0,a+c=1/2,所以0<c<1/2
多年没做高中题了,答得不是很规范,自己调整一下吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询