已知x+y=-4.xy=12,求x+1分之y+1加上y+1分之x+1的值
展开全部
=(y+1)/(x+1)+(x+1)/(y+1)
=[(y+1)²+(x+1)²]/(x+1)(y+1)
=(y²+2y+1+x²+2x+1)/(xy+x+y+1)
=[(x+y)²-2xy+2(x+y)+2]/(xy+x+y+1)
把x+y=-4.xy=12代人上式得:
[(-4)²-2×12+2(-4)+2]/(12-4+1)
=-14/9
=[(y+1)²+(x+1)²]/(x+1)(y+1)
=(y²+2y+1+x²+2x+1)/(xy+x+y+1)
=[(x+y)²-2xy+2(x+y)+2]/(xy+x+y+1)
把x+y=-4.xy=12代人上式得:
[(-4)²-2×12+2(-4)+2]/(12-4+1)
=-14/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(y+1)/(x+1)+(x+1)/(y+1)
=[(y+1)²+(x+1)²]/[(x+1)(y+1)]
=(y²+2y+1+x²+2x+1)/(xy+x+y+1)
=[(x+y)²-2xy+2(x+y)+2]/(xy+x+y+1)
=[(-4)²-2*12+2*(-4)+2]/(12-4+1)
=-14/9
=[(y+1)²+(x+1)²]/[(x+1)(y+1)]
=(y²+2y+1+x²+2x+1)/(xy+x+y+1)
=[(x+y)²-2xy+2(x+y)+2]/(xy+x+y+1)
=[(-4)²-2*12+2*(-4)+2]/(12-4+1)
=-14/9
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:原式=(x+1)^+(y+1)^/(x+1)(y+1)
=x^+1+2x+y^+1+2y/xy+x+y+1
=x^+y^+3(x+y)+xy+3
因为x+y=-4
xy=12
所以x^+y^=(x+y)^-2xy
=-8
所以原式=-8+3×(-4)+12+3
=-5
注:^为“平方”
=x^+1+2x+y^+1+2y/xy+x+y+1
=x^+y^+3(x+y)+xy+3
因为x+y=-4
xy=12
所以x^+y^=(x+y)^-2xy
=-8
所以原式=-8+3×(-4)+12+3
=-5
注:^为“平方”
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
[(y+1)/(x+1)]+[(x+1)/(y+1)]
=[(y+1)²+(x+1)²]/(x+1)(y+1)
=[x²+y²+2(x+y)+2]/(xy+x+y+1)
=[(x+y)²-2xy+8+2]/(xy+x+y+1)
=(16-24+10)/(12-4+1)
=2/9
[(y+1)/(x+1)]+[(x+1)/(y+1)]
=[(y+1)²+(x+1)²]/(x+1)(y+1)
=[x²+y²+2(x+y)+2]/(xy+x+y+1)
=[(x+y)²-2xy+8+2]/(xy+x+y+1)
=(16-24+10)/(12-4+1)
=2/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询