大家帮帮忙,帮我解决这道数学题吧。

在下图三角ABC中,D是AB边上的中点,EC:AC=1:4,若两块阴影部分的面积相差6平方厘米,则三角形ABC的面积是多少?(要有过程,回答得好的话,我还会给财富值,大家... 在下图三角ABC中,D是AB边上的中点,EC:AC=1:4,若两块阴影部分的面积相差6平方厘米,则三角形ABC的面积是多少?(要有过程,回答得好的话,我还会给财富值,大家帮帮忙)
^
展开
轻松不挂科
2011-07-24 · TA获得超过118个赞
知道小有建树答主
回答量:105
采纳率:0%
帮助的人:81.8万
展开全部
设中点为O ADC和DBC因高底相等,由此推出ADE比BCO大6平方厘米,而ABE和BEC因高相等,底是3:1,相差三倍,也就是2*6=12平方厘米 12/3=4平方厘米 是BEC 4*3=12平方厘米 12+4=16平方厘米
更多追问追答
追问
正确答案是24平方厘米
追答
对不起  错了    设中点为O                            ADC和DBC因高底相等,由此推出ADE比BCO大6平方厘米,而ABE和BEC因高相等,底是3:1,相差2倍          也就是2*6=12平方厘米   12/2=6平方厘米  是BEC         6*3=118平方厘米 18+6=24平方厘米        马虎了
sunnyandi
2011-07-24 · TA获得超过1.6万个赞
知道大有可为答主
回答量:7095
采纳率:50%
帮助的人:2287万
展开全部
楼主你好,请上图
更多追问追答
追问
我记得我插入图片了……
追答
楼主你好
先设BE与CD的交点是F
这种题很明显要用梅涅劳斯定理,得到CE/EA×AB/BD×DF/FC=1,容易得到CE/EA=1/3,AB/BD=2,所以说DF/FC=3/2,即S△DFB/S△CFB=3/2,继续用梅涅劳斯定理,得到BD/DA×AC/CE×EF/FB=1,容易得到BD/DA=1,AC/CE=4,所以说EF/FB=1/4,即S△CFE/S△CFB=1/4,所以S△DFB/S△CFE=6/1,即(5/6)×S△DFB=6平方厘米,即S△DFB=36/5平方厘米,即S△CFB=(2/3)×S△DFB=(2/3)×(36/5)=24/5平方厘米,所以S△BDC=S△DFB+S△CFB=(36/5)+(24/5)=12平方厘米,所以S△ABC=2×S△BDC=2×12=24平方厘米
如果你不知道梅涅劳斯定理,可以上网查查,这是一个非常有趣且有用的定理,应该掌握
希望你满意
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
miqi19970811
2011-07-24
知道答主
回答量:9
采纳率:0%
帮助的人:0
展开全部
这个很简单,只不过麻烦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式