已知0<x<π/4,sin(π/4-x)=5/13,求cos2x/cos(π/4+x)的值
1个回答
展开全部
12√2/13
追问
求过程
追答
已知0<x<π/4,sin(π/4-x)=5/13,求cos2x/cos(π/4+x)的值
已知0<x<π/4,则sinx>0,cosx>0
sin(π/4-x)=sinπ/4·cosx-cosπ/4·sinx=√2/2(cosx-sinx)=5/13
则cosx-sinx=5√2/13,又因为sin²x+cos²x=1
2cosx·sinx=-(cosx-sinx)²+sin²x+cos²x=1-50/169=119/169
(cosx+sinx)²=(cosx-sinx)²+4cosx·sinx=50/169+238/169=288/169
则cosx+sinx=12√2/13
cos2x/cos(π/4+x)=(cos²x-sin²x)/(cosπ/4·cosx-sinπ/4·sinx)=(cosx+sinx)(cosx-sinx)/[√2/2(cosx-sinx)]=√2(cosx+sinx)=√2×12√2/13=24/13
啊,应该是24/13
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询