证明:函数y=-x3-x+1(x∈R)是减函数
2个回答
展开全部
设x1、x2都是实数,且x1<x2,于是
y1=-(x1)^3-(x1)+1;y2=-(x2)^3-(x2)+1
于是
y1-y2=-(x1)^3-(x1)+1-[-(x2)^3-(x2)+1]=[(x2)-(x1)][(x2)^2+(x2)(x1)+(x1)^2+1]
=[(x2)-(x1)]{[(x2)+(x1)/2]^2+(3/4)*(x1)^2+1}
显然,{[(x2)+(x1)/2]^2+(3/4)*(x1)^2+1}>0;又x1<x2,故(x2)-(x1)>0,即y1-y2>0
所以函数y=-x3-x+1(x∈R)是减函数。
y1=-(x1)^3-(x1)+1;y2=-(x2)^3-(x2)+1
于是
y1-y2=-(x1)^3-(x1)+1-[-(x2)^3-(x2)+1]=[(x2)-(x1)][(x2)^2+(x2)(x1)+(x1)^2+1]
=[(x2)-(x1)]{[(x2)+(x1)/2]^2+(3/4)*(x1)^2+1}
显然,{[(x2)+(x1)/2]^2+(3/4)*(x1)^2+1}>0;又x1<x2,故(x2)-(x1)>0,即y1-y2>0
所以函数y=-x3-x+1(x∈R)是减函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询