数列{an}的前n项和为Sn且Sn=n(n+1) 1 若数列{bn}满足an=b1/(3+1)+b2/(3^2+1)+b3/(3^3+1)+……bn/(3^n+1)

求{bn}通项公式2令cn=anbn/4求数列{cn}的前n项和Tn... 求{bn}通项公式
2 令cn=anbn/4求数列{cn}的前n项和Tn
展开
film21
2011-07-25 · TA获得超过5210个赞
知道小有建树答主
回答量:906
采纳率:100%
帮助的人:482万
展开全部
(1)an=Sn-S(n-1)=n(n+1)-(n-1)n=2n
因为an=b1/(3+1)+b2/(3^2+1)+b3/(3^3+1)+……bn/(3^n+1)
所以an-a(n-1)=bn/(3^n+1)
而an-a(n-1)=2
所以bn/(3^n+1)=2 得到bn=2(3^n+1)
(2)cn=anbn/4=n(3^n+1)=n×3^n+n;
令dn=n×3^n Pn是dn的前n项和;
那么Pn=1×3+2×3^2+...+n×3^n ①
所以3Pn=1×3^2+2×3^3+...+n×3^(n+1) ②

②-①得到 2Pn=n×3^(n+1)-(3+3^2+...+3^n)=n×3^(n+1)-[3^(n+1)-3)/2]
化简后Pn=[(2n-1)×3^(n+1)+3]/4;
所以Tn=Pn+n(n+1)/2=[(2n-1)×3^(n+1)+2n^2+2n+3]/4;
追问
刚刚又算了算 算出来了   谢谢
hbc3193034
2011-07-25 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
数列{an}的前n项和为Sn且Sn=n(n+1),
易知an=Sn-S<n-1>=2n.
待续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式