函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则( )
A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数答案选D,希望每个选项都能解释一下,谢谢!...
A.f(x)是偶函数 B.f(x)是奇函数 C.f(x)=f(x+2) D.f(x+3)是奇函数
答案选D,希望每个选项都能解释一下,谢谢! 展开
答案选D,希望每个选项都能解释一下,谢谢! 展开
展开全部
因为fx+1和fx-1都是奇函数,可以知道,这是一个周期函数
周期是2
所以fx+3是奇函数
周期是2
所以fx+3是奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-28
展开全部
d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x+1)是奇函数,则f(-x+1)=-f(x+1)
f(x-1)是奇函数,则f(-x-1)=-f(x-1) ==>>> f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)
则:f(-x+1)=f[-(x+2)-1]=f(-x-3) ==>>> f(-x+1)=f(-x-3) ===>>> f(x+1)=f(x-3)
则f(x)是以4为周期的函数,即:f(x)=f(x+4)
又:f(-x+1)=-f(x+1) ===>>> f[-(x+4)+1]=-f[(x+4)+1] ==>>> f(-x-3)=-f(x+5)
f(x+5)=f(x-3)
所以:f(-x-3)=-f(x-3),即:f(x+3)是奇函数。
f(x-1)是奇函数,则f(-x-1)=-f(x-1) ==>>> f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)
则:f(-x+1)=f[-(x+2)-1]=f(-x-3) ==>>> f(-x+1)=f(-x-3) ===>>> f(x+1)=f(x-3)
则f(x)是以4为周期的函数,即:f(x)=f(x+4)
又:f(-x+1)=-f(x+1) ===>>> f[-(x+4)+1]=-f[(x+4)+1] ==>>> f(-x-3)=-f(x+5)
f(x+5)=f(x-3)
所以:f(-x-3)=-f(x-3),即:f(x+3)是奇函数。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询