
1x2+2x3+3x4+……+19x20如何巧算?
2个回答
展开全部
通项为:n(n+1)=n^2+n
因∑n^2=n(n+1)(2n+1)/6
∑n=n(n+1)/2
所以:1x2+2x3+3x4+……+19x20
=19*(19+1)*(2*19+1)/6+19*(19+1)/2
=19*20*39/6+19*20/2
=19*10*13+19*10
=190*14
=2660
因∑n^2=n(n+1)(2n+1)/6
∑n=n(n+1)/2
所以:1x2+2x3+3x4+……+19x20
=19*(19+1)*(2*19+1)/6+19*(19+1)/2
=19*20*39/6+19*20/2
=19*10*13+19*10
=190*14
=2660
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询