2011安徽中考试卷22题最后一问怎么做
4个回答
展开全部
你好!
22、(2011•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:
(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)
试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
考点:二次函数的应用。
专题:应用题。
分析:(1)由图表中的数据可知该养殖场每天的捕捞量与前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.
解答:解:(1)该养殖场每天的捕捞量与前一天减少10kg;
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
点评:此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.
22、(2011•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:
(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)
试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
考点:二次函数的应用。
专题:应用题。
分析:(1)由图表中的数据可知该养殖场每天的捕捞量与前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.
解答:解:(1)该养殖场每天的捕捞量与前一天减少10kg;
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
点评:此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.
展开全部
(1)该养殖场每天的捕捞量与前一天减少10kg;
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)
试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
考点:二次函数的应用。
专题:应用题。
分析:(1)由图表中的数据可知该养殖场每天的捕捞量与前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.
解答:解:(1)该养殖场每天的捕捞量与前一天减少10kg;
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)
试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
考点:二次函数的应用。
专题:应用题。
分析:(1)由图表中的数据可知该养殖场每天的捕捞量与前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.
解答:解:(1)该养殖场每天的捕捞量与前一天减少10kg;
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)该养殖场每天的捕捞量与前一天减少10kg;
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
(2)由题意,得
y=20(950﹣10x)﹣(5﹣ )(950﹣10x)
=﹣2x2+40x+14250;
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x为整数,
∴当1≤x≤10时,y随x的增大而增大;
当10≤x≤20时,y随x的增大而减小;
当x=10时即在第10天,y取得最大值,最大值为14450.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |