2个回答
展开全部
左边 (1+1/n)^n=1+C(n,1)(1/n)+C(n,2)(1/n)^2+....+C(n,n)(1/n)^n
>=1+C(n,1)(1/n)=1+1=2
右边 (1+1/n)^n=1+C(n,1)(1/n)+C(n,2)(1/n)^2+......C(n,n)(1/n)^n
注意到 C(n,k)(1/n)^k=n*(n-1)*......(n-(k-1))/(k!*n^k)=(1-1/n)(1-2/n).....(1-(k-1)/n))/k!<1/k!
所以 (1+1/n)^n<1+1/1!+1/2!+......+1/n!
<1+1+1/(1*2)+1/(2*3)+1/(3*4)+....1/((n-1)*n)
=1+1+1-1/2+1/2-1/3+1/3-1/4+......+1/(n-1)-1/n
=3-1/n <3
>=1+C(n,1)(1/n)=1+1=2
右边 (1+1/n)^n=1+C(n,1)(1/n)+C(n,2)(1/n)^2+......C(n,n)(1/n)^n
注意到 C(n,k)(1/n)^k=n*(n-1)*......(n-(k-1))/(k!*n^k)=(1-1/n)(1-2/n).....(1-(k-1)/n))/k!<1/k!
所以 (1+1/n)^n<1+1/1!+1/2!+......+1/n!
<1+1+1/(1*2)+1/(2*3)+1/(3*4)+....1/((n-1)*n)
=1+1+1-1/2+1/2-1/3+1/3-1/4+......+1/(n-1)-1/n
=3-1/n <3
追问
注意到 C(n,k)(1/n)^k=n*(n-1)*......(n-(k-1))/(k!*n^k)=(1-1/n)(1-2/n).....(1-(k-1)/n))/k!<1/k!
这点没太看懂,能在解释下吗,谢谢,麻烦了
追答
C(n,k)=n!/((n-k)!*k!)=n(n-1).....(n-k+1)/k!
C(n,k)*(1/n)^k=C(n,k)/n^k=n(n-1).....(n-k+1)/(n^k*k!)=[(n-1)/n]*[(n-2)/n]*.....[(n-k+1)/n]/k!
=(1-1/n)(1-2/n)......(1-(k-1)/n)/k!
1-1/n<1 1-2/n<1......1-(k-1)/n<1
所以C(n,k)(1/n)^k<1/k!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询