常微分方程的通解

dy/dx=(x-y+1)/(x+y-3)y^4=2y^n+y=0y''+6y'+9y=e^(-3x)y''+y'-2y=4e^(2x)... dy/dx=(x-y+1)/(x+y-3)
y^4=2y^n+y=0
y''+6y'+9y=e^(-3x)
y''+y'-2y=4e^(2x)
展开
阿巧能帮到您
2011-07-25 · 阿巧能帮到您解决一定的困难
阿巧能帮到您
采纳数:17 获赞数:114

向TA提问 私信TA
展开全部
先求齐次通解,再求非齐次通解,然后组合就行了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
drug2009
2011-07-27 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6644
采纳率:100%
帮助的人:2667万
展开全部
1
dy/dx=(x-y+1)/(x+y-3)
设u=x-y+1
v=x+y-3
x=(u+v)/2-1
y=(v-u)/2-2
dx=(du+dv)/2
dy=(dv-du)/2
(dv-du)/(du+dv)=u/v
udu+udv=vdv-vdu
udu+udv+vdu-vdv=0
u^2+2uv-v^2=C0
通解
(x-y+1)^2+2(x-y+1)(x+y-3)-(x+y-3)^2=C0

y''+6y'+9y=e^(-3x)
y''+6y'+9y=0
特征方程
r^2+6r+9=0
r=-3
y=C1e^(-3x)+C2xe^(-3x)
设y=C(x)e^(-3x)
C''+6C'=1
dC'/dx=1-6C'
-6dC'/(1-6C')=-6dx
ln(1-6C')=-6x+C2
1-6C'=C3*e^(-6x)
C'=1/6-C3e^(-6x)/6
C=x/6+C3e^(-6x)/36
y=[x/6+C3e^(-6x)/36]e^(-3x)+C1e^(-3x)+C2xe^(-3x)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
名字叫难忘啊DM
高粉答主

2020-02-29 · 醉心答题,欢迎关注
知道答主
回答量:5.8万
采纳率:3%
帮助的人:2783万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式