∫x^2/(1+e^x)dx 求解定积分 积分上下限为-1到1
1个回答
展开全部
Y= ∫(-1,1) x^2/(1+e^x)dx (-1,1) 为 积分上下限为-1到1
令t=-x
则 Y= ∫(1,-1) t^2/[1+e^(-t)] d(-t)
= ∫(-1,1) t^2/[1+e^(-t)] dt
所以
Y=1/2 ∫(-1,1) x^2/(1+e^x) + x^2/[1+e^(-x)] dx
=1/2 ∫(-1,1) x^2 [ 1/(1+e^x) + e^x/(1+e^x) ] dx
=1/2 ∫(-1,1) x^2 dx
=1/3
令t=-x
则 Y= ∫(1,-1) t^2/[1+e^(-t)] d(-t)
= ∫(-1,1) t^2/[1+e^(-t)] dt
所以
Y=1/2 ∫(-1,1) x^2/(1+e^x) + x^2/[1+e^(-x)] dx
=1/2 ∫(-1,1) x^2 [ 1/(1+e^x) + e^x/(1+e^x) ] dx
=1/2 ∫(-1,1) x^2 dx
=1/3
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询