证明:函数的可导性与连续性的关系

伊兰卡
推荐于2017-09-26 · TA获得超过6528个赞
知道小有建树答主
回答量:834
采纳率:0%
帮助的人:537万
展开全部
给你讲解一下函数可导性与连续性的关系:设函数y=f(x)在x处可导,即lim(Δx→0)Δy/Δx=f '(x)存在。由具有极限的函数与无穷小的关系知道Δy/Δx=f '(x)+α(α为任意小的正实数,可以理解α的极限为0,但α≠O)上式同时乘以Δx,得Δy=f '(x)Δx+αΔx由此可见,当Δx→0时,Δy→0。这就是说,函数y=f(x)在x处是连续的。所以,函数y=f(x)在x处可导,则函数y=f(x)在x处必定连续。
来自:求助得到的回答
难能做大好人2
2011-07-26 · TA获得超过284个赞
知道小有建树答主
回答量:294
采纳率:0%
帮助的人:75.8万
展开全部
可导一定连续,连续不一定可导.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式