函数的有界性和和无穷大问题?

函数y=x*cosx在(-OO,+OO)内是否有界?这个函数是否为x->+OO(x趋向于正无穷大)时的无穷大?为什么?谢谢!我想问下各位高手你们答复中的无穷以及Pi等数学... 函数y=x*cosx在(-OO,+OO)内是否有界?
这个函数是否为x->+OO(x趋向于正无穷大)时的无穷大?
为什么?
谢谢!
我想问下各位高手你们答复中的无穷以及Pi等数学符号是怎么打上去的?
谢谢.
展开
百了居士
2007-07-01 · TA获得超过1.5万个赞
知道大有可为答主
回答量:2683
采纳率:0%
帮助的人:0
展开全部
楼上解答有误!

函数y=x*cosx在(-∞,+∞)内无界.由以下事实即知:
取x=2kπ,k为整数,则y=2kπ*cos2kπ=2kπ.

x→+∞时,y=x*cosx不是无穷大.由以下事实即知:
取x=2kπ+π/2,k为整数,则y=(2kπ+π/2)*cos(2kπ+π/2)=0.

附带说一下:"有界函数与无穷小的乘积是无穷小"是对的,但"有界函数与无穷大的乘积仍是无穷大"是错的.
爱o不释手
推荐于2017-10-08 · TA获得超过7550个赞
知道大有可为答主
回答量:1207
采纳率:0%
帮助的人:1784万
展开全部
·函数y=x*cosx在(-∞,+∞)内无界。
可用有界函数和极限相关定义证明。
实际上,当x→∞时,
可取x=2kπ或 2kπ+π,k∈Z
则y = x*cosx =2kπ*cos2kπ=2kπ
即y无界。

·但是当x→∞时 y=x*cosx不是无穷大;
可用极限定义证明。
实际上,当x→∞时,
可取x=2kπ+π/2或 2kπ-π/2,k∈Z
则y = x*cosx =(2kπ+π/2)*cos(2kπ+π/2)=0
即不存在X>0,使当|x|>X时,有|f(x)|>M。

呵呵,是的。书上没有第二个结论。多谢百了居士兄弟的指点。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式