设x、y为实数,若4x^2+y^2+xy=1,则2x+y的最大值是
展开全部
令2x=a,y=b,2X+Y=a+b
4X^2+Y^2+XY=1->a^2+b^2+ab/2=1->∵[(a+b)/2]^2≤(a^2+b^2)/2∴->
a^2+b^2+(a^2+b^2)/4-1≥a^2+b^2+ab/2-1=0所以2(a^2+b^2)≥8/5≥(a+b)^2,所以2X+Y=a+b≤√(8/5)
4X^2+Y^2+XY=1->a^2+b^2+ab/2=1->∵[(a+b)/2]^2≤(a^2+b^2)/2∴->
a^2+b^2+(a^2+b^2)/4-1≥a^2+b^2+ab/2-1=0所以2(a^2+b^2)≥8/5≥(a+b)^2,所以2X+Y=a+b≤√(8/5)
参考资料: http://zhidao.baidu.com/question/276803119.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询