如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,连结EF,

分别交AC、BD于点M、N,试判断⊿OMN的形状,并加以证明;(2)如图2,在四边形ABCD中,若AB=CD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、C... 分别交AC、BD于点M、N,试判断⊿OMN的形状,并加以证明;
(2)如图2,在四边形ABCD中,若AB=CD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论: ;
展开
WAD39
2011-07-31
知道答主
回答量:41
采纳率:0%
帮助的人:17万
展开全部
(1)作AB中点信腔缺G,滑辩连接EG、FG,跟据中位线定理得EG=FG。角FEG=ONM,角EFG=OMN,所以三角形OMN是等腰三角形
(2)相等的角不是很多嘛?(角B=MAE 角C=NDE) 还是圆轮有神马条件的?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式