函数y=1/ 1-x,的图像与函数y=2sinπx(-2<=x=<4)的图像所有交点的横坐标之和等于多少,要过程的
3个回答
展开全部
:函数y1=1x-1与y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,
当1<x≤4时,y1≥13,
而函数y2在(1,4)上出现1.5个周期的图象,在(2,52)上是单调增且为正数函数,
y2在(1,4)上出现1.5个周期的图象,在(52,3)上是单调减且为正数,
∴函数y2在x=52处取最大值为2≥23,
而函数y2在(1,2)、(3,4)上为负数与y1的图象没有交点,
所以两个函数图象在(1,4)上有两个交点(图中C、D),
根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A、B),
并且:xA+xD=xB+xC=2,故所求的横坐标之和为4,
故答案为:4.
展开全部
答案应该是8
令z=1-x,即x=1-z;则y=1/(1-x)变为y=1/z,y=2sinπx变为y=2sinπ(1-z)=2[sinπcosπz-cosπsinπz]=2sinπz。因-2<=x=<4,故-4<=-x=<2,-3<=1-x<=3,即-3<=z<=3。这样可知y=1/z与y=2sinπz均为[-3,3]上的奇函数,令f(z)=1/z-2sinπz,则若有z0使得f(z)=0,则必有-z0也使f(z)=0成立。此时x的值分别为1-x0,1+x0,他们的和为2。另外由于y=1/z有意义,故z≠0,排出了交点为奇数个的情形。问题转化为求f(z)=1/z-2sinπz在[-3,3]上的零点有几对的问题。只看z>0一边,简单的画一下y=1/z与y=2sinπz的图像,显然当z=1/2时,1/z=2,2sinπz=2这是一个交点并且此时1/z的切线斜率小于0,而2sinπz的切线斜率等于0这样两者在(1/2,1)上还有一个交点;显然在(2,5/2)(5/2,3)上还各有一个交点。共有四对交点,结果是8.
令z=1-x,即x=1-z;则y=1/(1-x)变为y=1/z,y=2sinπx变为y=2sinπ(1-z)=2[sinπcosπz-cosπsinπz]=2sinπz。因-2<=x=<4,故-4<=-x=<2,-3<=1-x<=3,即-3<=z<=3。这样可知y=1/z与y=2sinπz均为[-3,3]上的奇函数,令f(z)=1/z-2sinπz,则若有z0使得f(z)=0,则必有-z0也使f(z)=0成立。此时x的值分别为1-x0,1+x0,他们的和为2。另外由于y=1/z有意义,故z≠0,排出了交点为奇数个的情形。问题转化为求f(z)=1/z-2sinπz在[-3,3]上的零点有几对的问题。只看z>0一边,简单的画一下y=1/z与y=2sinπz的图像,显然当z=1/2时,1/z=2,2sinπz=2这是一个交点并且此时1/z的切线斜率小于0,而2sinπz的切线斜率等于0这样两者在(1/2,1)上还有一个交点;显然在(2,5/2)(5/2,3)上还各有一个交点。共有四对交点,结果是8.
参考资料: http://zhidao.baidu.com/question/280053999.html
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答案应该为2,先作出y=1/(1-x)的图像,是关于x=1这条直线对称的双曲线,在x<1的范围内函数是增加的,在x>1的范围也是增加的;再作出这个三角函数的图像,另1/(1-x)=2可得x=3,而此时当x=3三角函数的值为0,则表面图像在-2<=x=<4的区间有4个交点。从图像可以可以看出,把x=1改成x=0的话,则答案为0,相当于把两点往右各推移一个单位,所以其值为2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询