
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是k>-3 。
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是()A.k>0B.k>-1C.k>-2D.k>-3答案由a...
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是( )
A.k>0 B.k>-1
C.k>-2 D.k>-3
答案
由an+1>an知道数列是一个递增数列,又因为通项公式an=n2+kn+2,可以看作是关于n的二次函数,考虑到n∈N*,所以-k2<3/2 得k>-3
其中 3/2怎么来的?? 展开
A.k>0 B.k>-1
C.k>-2 D.k>-3
答案
由an+1>an知道数列是一个递增数列,又因为通项公式an=n2+kn+2,可以看作是关于n的二次函数,考虑到n∈N*,所以-k2<3/2 得k>-3
其中 3/2怎么来的?? 展开
4个回答
展开全部
因为是增函数 对称轴应在自然数的前面
但是考虑到1,2之间自变量只有两个数,如果对称轴在1,2之间并且有f(2)>f(1)也满足条件
这时候对称轴应在3/2前面和1后面 综合上种情况
所以对称轴在3/2前面
因此有-K/2<3/2
得到k>-3
但是考虑到1,2之间自变量只有两个数,如果对称轴在1,2之间并且有f(2)>f(1)也满足条件
这时候对称轴应在3/2前面和1后面 综合上种情况
所以对称轴在3/2前面
因此有-K/2<3/2
得到k>-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
将(n+1)带入an,再将a(n+1)、a(n)带入a(n+1)>a(n) 就得到k+2n+1>0
因为n>=1,所 k>-3
不懂你的答案
因为n>=1,所 k>-3
不懂你的答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sda
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为 an+1 > an
所以an+1 - an = (n+1)^2+(n+1)k+2-n^2-kn-2 = 2n+1+k > 0
所以k > -(2n+1)
k>-3
所以an+1 - an = (n+1)^2+(n+1)k+2-n^2-kn-2 = 2n+1+k > 0
所以k > -(2n+1)
k>-3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询