已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且 An/Bn = (7n+45)/(n+3),则a5/b6=_____
1个回答
展开全部
an=a1+(n-1)*d bn=b1+(n-1)*D
An=n(a1+an)/2 Bn=n(b1+bn)/2
An/Bn =(a1+an)/(b1+bn)
(7n+45)/(n+3),
a5/b6 =(a1+4d)/(b1+5D)
=2(a1+4d)/2(b1+5D)
=(2a1+8d)/(2b1+10D)
=(a1+a1+8d)/(b1+b1+10D)
=(a1+a9)/(b1+b11)
=A9/B11
=(7*9+45)/(11+3)
=108/14
=54/7
An=n(a1+an)/2 Bn=n(b1+bn)/2
An/Bn =(a1+an)/(b1+bn)
(7n+45)/(n+3),
a5/b6 =(a1+4d)/(b1+5D)
=2(a1+4d)/2(b1+5D)
=(2a1+8d)/(2b1+10D)
=(a1+a1+8d)/(b1+b1+10D)
=(a1+a9)/(b1+b11)
=A9/B11
=(7*9+45)/(11+3)
=108/14
=54/7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询