已知函数f(x)定义在区间(-1,1)上,f(1/2)=-1,且当x,y属于(-1,1)时,恒有f(x)-f(y)=f((x-y)/(1-xy))
又数列{an}满足a1=1/2,an+1=(2an)/(1+an^2).设bn=1/f(a1)+.....1/f(an)。求f(an)的表达式是否存在正整数m,使得对任意...
又数列{an}满足a1=1/2,an+1=(2an)/(1+an^2).设bn=1/f(a1)+.....1/f(an)。求f(an)的表达式
是否存在正整数m,使得对任意n属于N,都有bn小于(m-8)/4成立,若存在,求出m最小值;若不存在,说明理由 展开
是否存在正整数m,使得对任意n属于N,都有bn小于(m-8)/4成立,若存在,求出m最小值;若不存在,说明理由 展开
2个回答
展开全部
对于f(x) - f(y) = f((x-y)/(1-xy))
代入y = x可得 f(0) = 0
代入x = 0可得 f(-y) = -f(y) (因此是奇函数)
代入y = x可得2f(x) = f(x) - f(-x) = f(2x/(1+x^2))发现和a_n递推一样
因此f(a_n+1) = 2f(a_n)等比,首项f(a_1) = -1,通项f(a_n) = -2^(n-1)
b_n(等比求和)= 1/(2^(n-1)) - 2
这里很奇怪,是个递减数列,居然要求b_n最大值,楼主你确定f(1/2) = -1而不是1么。。。囧
如果楼主没有记错,b_n最大值必然是b_1 = -1然后要 -1<(m-8)/4,m>4没有最小值。。。
如果记错了是1的话f(a_n) = 2^(n-1),b_n = 2 - 1/(2^(n-1))最大值2且取不到
因此2<=(m-8)/4,m最小值16
代入y = x可得 f(0) = 0
代入x = 0可得 f(-y) = -f(y) (因此是奇函数)
代入y = x可得2f(x) = f(x) - f(-x) = f(2x/(1+x^2))发现和a_n递推一样
因此f(a_n+1) = 2f(a_n)等比,首项f(a_1) = -1,通项f(a_n) = -2^(n-1)
b_n(等比求和)= 1/(2^(n-1)) - 2
这里很奇怪,是个递减数列,居然要求b_n最大值,楼主你确定f(1/2) = -1而不是1么。。。囧
如果楼主没有记错,b_n最大值必然是b_1 = -1然后要 -1<(m-8)/4,m>4没有最小值。。。
如果记错了是1的话f(a_n) = 2^(n-1),b_n = 2 - 1/(2^(n-1))最大值2且取不到
因此2<=(m-8)/4,m最小值16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询