函数f(x)的定义域为R,若函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则
5个回答
展开全部
f(x+1)是奇函数,则f(-x+1)=-f(x+1)
f(x-1)是奇函数,则f(-x-1)=-f(x-1) ==>>> f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)
则:f(-x+1)=f[-(x+2)-1]=f(-x-3) ==>>> f(-x+1)=f(-x-3) ===>>> f(x+1)=f(x-3)
则f(x)是以4为周期的函数,即:f(x)=f(x+4)
又:f(-x+1)=-f(x+1) ===>>> f[-(x+4)+1]=-f[(x+4)+1] ==>>> f(-x-3)=-f(x+5)
f(x+5)=f(x-3)
所以:f(-x-3)=-f(x-3),即:f(x+3)是奇函数。
本题选D
f(x-1)是奇函数,则f(-x-1)=-f(x-1) ==>>> f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)
则:f(-x+1)=f[-(x+2)-1]=f(-x-3) ==>>> f(-x+1)=f(-x-3) ===>>> f(x+1)=f(x-3)
则f(x)是以4为周期的函数,即:f(x)=f(x+4)
又:f(-x+1)=-f(x+1) ===>>> f[-(x+4)+1]=-f[(x+4)+1] ==>>> f(-x-3)=-f(x+5)
f(x+5)=f(x-3)
所以:f(-x-3)=-f(x-3),即:f(x+3)是奇函数。
本题选D
展开全部
若f(x+1)与f(x-1)都是奇函数,说明函数f(x)左移或右移一个单位都是奇函数,f(x+1)与f(x-1)均过原点,这说明函数f(x)是周期为4的函数,且f(x+1)与f(x-1)一个在原点附近是增函数,一个是减函数,故f(x)是偶函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在C中, f(x)=f(x+2),用x+2代替x得到f(x+2)=f(x+4)=f(x),也就是上面这个式子!
这一步有问题,推不出来。。。正确详见楼上的!
这一步有问题,推不出来。。。正确详见楼上的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
33333333333333333333333333333333333
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x+1)是奇函数,则f(-x+1)=-f(x+1)
f(x-1)是奇函数,则f(-x-1)=-f(x-1) ==>>> f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)
则:f(-x+1)=f[-(x+2)-1]=f(-x-3) ==>>> f(-x+1)=f(-x-3) ===>>> f(x+1)=f(x-3)
则f(x)是以4为周期的函数,即:f(x)=f(x+4)
又:f(-x+1)=-f(x+1) ===>>> f[-(x+4)+1]=-f[(x+4)+1] ==>>> f(-x-3)=-f(x+5)
f(x+5)=f(x-3)
故得答案
f(x-1)是奇函数,则f(-x-1)=-f(x-1) ==>>> f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)
则:f(-x+1)=f[-(x+2)-1]=f(-x-3) ==>>> f(-x+1)=f(-x-3) ===>>> f(x+1)=f(x-3)
则f(x)是以4为周期的函数,即:f(x)=f(x+4)
又:f(-x+1)=-f(x+1) ===>>> f[-(x+4)+1]=-f[(x+4)+1] ==>>> f(-x-3)=-f(x+5)
f(x+5)=f(x-3)
故得答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询