函数的几种基本特性?
函数的几种基本特性:
1、有界性:就是y轴上的界限,比如y=sinx,-1<=y<=1,这就是方程的有界性,而且有界性是人为的,可以限定x的取值范围,比如y=tanx,在x∈[-1,1]就是有界的。
2、单调性:函数总是在某个区域不断上升,又在某个区域不断下降,或者总是上升,或者总是下降,这就是函数的单调性。
3、奇偶性:函数图象按原点旋转180°重合,就是奇函数,函数图象按y轴折叠重合,就是偶函数,有奇函数、偶函数,也有非奇非偶函数,有公式确定。
4、周期性:函数图象在x轴上加一段距离,能反复出现,就是周期性,不是所有的函数都有周期性,也不是所有的周期函数都有最小正周期,比如f(x)=0。
扩展资料:
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。
另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
函数f的图象是平面上点对 的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。
如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。
参考资料来源:百度百科——函数
一、有界性
就是y轴上的界限,比如y=sinx,-1<=y<=1,这就是方程的有界性,而且有界性是人为的,可以限定x的取值范围,比如y=tanx,在x∈[-1,1]就是有界的。
判断函数有界性通常采用以下方法
1、闭区间上的连续函数必定是有界函数。
2、适当放大或缩小有关表达式导出其界。
3.利用基本初等函数的图像判断.
二、单调性
奇偶性的前提是:定义域关于原点对称。
四、周期性
设函数 f(x) 的周期为 T,则 f(ax+b) 的周期为。f(x)关于直线 x=T 对称的充要条件是:f(x)=f(2T-x)。
扩展资料
1、函数概念有两个基本要素:定义域、对应法则(或称依赖关系)。只有当两个函数的定义域与对应法则完全相同时,才能说它们是同一个函数。
2、根据自变量的个数,可将函数分为:一元函数、多元函数等。
3、根据因变量取值个数,可将函数分为:单值函数、多值函数.在高数中,如没有特别说明,处理的都是单值函数。
4、函数的表示法:公式法(显式、隐式、参数式),列表法,图像法等.
参考资料来源:百度百科-函数
1.有界性 就是y轴上的界限,比如y=sinx,-1<=y<=1,这就是方程的有界性,而且有界性是人为的,可以限定x的取值范围,比如y=tanx,在x∈[-1,1]就是有界的
2.单调性 函数总是在某个区域不断上升,又在某个区域不断下降,或者总是上升,或者总是下降,这就是函数的单调性
3.奇偶性 函数图象按原点旋转180°重合,就是奇函数,函数图象按y轴折叠重合,就是偶函数,有奇函数、偶函数,也有非奇非偶函数,有公式确定
4.周期性 函数图象在x轴上加一段距离,能反复出现,就是周期性,不是所有的函数都有周期性,也不是所有的周期函数都有最小正周期,比如f(x)=0
参考资料: http://tieba.baidu.com/f?kz=1021044160