
设函数f(x)=x^2-ax+3,g(x)=ax-2a,若存在x0属于R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
展开全部
∵g(x)=ax-2a 且a≠0,
∴g(x)是一次函数,恒与x轴相交于(2,0),
即直线y=ax-2a恒过定点(2,0)
∵函数f(x)=x^2-ax+a+3的图像是开口向上的抛物线
∴当且仅当f(2)<0时
∴存在x0∈R使得f(x0)<0与g(x0)<0同时成立
∵f(2)=2^2-2a+a+3<0
∴a>7
∴g(x)是一次函数,恒与x轴相交于(2,0),
即直线y=ax-2a恒过定点(2,0)
∵函数f(x)=x^2-ax+a+3的图像是开口向上的抛物线
∴当且仅当f(2)<0时
∴存在x0∈R使得f(x0)<0与g(x0)<0同时成立
∵f(2)=2^2-2a+a+3<0
∴a>7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询