关于极限大一高数的几个问题
1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a|<2&”是数列{Xn}收敛于a的()条件答案是充要条件求解释!为什么是2&不是&呢?给定...
1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a|<2&”是数列{Xn}收敛于a的()条件 答案是充要条件 求解释!为什么是2&不是&呢?给定&的范围死什么意思?
2.用定义证明lim1/(n^2 -1)=0
n趋近于无穷
谢谢各位了!!讲的好可以追加财富!!! 展开
2.用定义证明lim1/(n^2 -1)=0
n趋近于无穷
谢谢各位了!!讲的好可以追加财富!!! 展开
展开全部
1. (1)首先“|Xn-a|<2&”与“|Xn-a|<&”表述的效果是一样的。你这样来看,对任意给定的&,如果当n>=N时,有|Xn-a|<2&,而按照极限的定义,要满足|Xn-a|<&才行;你把之前任意给定的&换成任意给定的&/2(就是把&/2看成一个整体),那么这个&/2也存在对应的正整数N',当n>=N'时,恒有|Xn-a|<2*(&/2)=&,它的意思就是数列{Xn}收敛于a,所以是充要条件。其实只要是个常数乘以&都是一样的。
(2)至于&属于(0,1),按照极限定义,这个&只要大于零就行。那么如果你任取的&本来属于(0,1),自然没问题了;如果你任取的&大于等于1,那么最后的式子|Xn-a|<&<&'(&'是属于任取的0到1的那个)。所以对&限定缩小后的范围,对极限的定义是没有影响的。
(第1题我想说的详细点,可能有点啰嗦。)
2. 我只说思路,具体你完全可以自己写出来。
就是要让1/(n^2 -1)<&,也就是(n^2 -1)>1/&,算出那个n的范围,往大的方向取个整数,就是N。这个N不需要算得很精确,保证不等式成立就行。
(2)至于&属于(0,1),按照极限定义,这个&只要大于零就行。那么如果你任取的&本来属于(0,1),自然没问题了;如果你任取的&大于等于1,那么最后的式子|Xn-a|<&<&'(&'是属于任取的0到1的那个)。所以对&限定缩小后的范围,对极限的定义是没有影响的。
(第1题我想说的详细点,可能有点啰嗦。)
2. 我只说思路,具体你完全可以自己写出来。
就是要让1/(n^2 -1)<&,也就是(n^2 -1)>1/&,算出那个n的范围,往大的方向取个整数,就是N。这个N不需要算得很精确,保证不等式成立就行。
追问
能加qq吗 老师457829458
上海桦明教育科技
2024-12-15 广告
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加...
点击进入详情页
本回答由上海桦明教育科技提供
展开全部
1、
2&也对,&也对,只要能证明存在N,对任意n≥N,任意的δ>0,|Xn-a|<δ即可。
2、
(省去lim)
[ 1/(n^2-1) - 0 ] = 1/(n^2-1) ,
对任意的δ>0,限制|n|>1,
若满足|1/(n^2-1)|<δ,
解之,只需n>1/δ + 1即可,
对任意的δ>0,存在N=[1/δ + 1]+1,对任意的n≥N,|Xn-a|<δ,
完成证明。
注:[x]表示对x取整,
例如0.3取1。56.6取57。
2&也对,&也对,只要能证明存在N,对任意n≥N,任意的δ>0,|Xn-a|<δ即可。
2、
(省去lim)
[ 1/(n^2-1) - 0 ] = 1/(n^2-1) ,
对任意的δ>0,限制|n|>1,
若满足|1/(n^2-1)|<δ,
解之,只需n>1/δ + 1即可,
对任意的δ>0,存在N=[1/δ + 1]+1,对任意的n≥N,|Xn-a|<δ,
完成证明。
注:[x]表示对x取整,
例如0.3取1。56.6取57。
追问
哦 谢谢
追答
加了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)&的意思是默认为小于任意给定的正数,反正就是无限趋近于零的意思,那么|Xn-a|<2&可以想象2&任然是小的不能再小的正数,也可能是为了好算把,当然是冲要条件了给定&的范围就是为了迷惑你的,实际它是于零无限接近的
2)对任意的e,总存在N=[1+1/(2e)](取整),使得当n>N时,总有
1/(n^2 -1)=1/2[1/(n-1)-1/(n+1)]<1/[2(n-1)]<e
故。。。。。=0
2)对任意的e,总存在N=[1+1/(2e)](取整),使得当n>N时,总有
1/(n^2 -1)=1/2[1/(n-1)-1/(n+1)]<1/[2(n-1)]<e
故。。。。。=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询