在△ABC中,a,b,c分别是角A、B、C的对边,设a+c=2b,A-C=60°,求sinB的值

答案是多少?在百度上有的只有公式,想知道答案是多少,最好有解题思路,谢谢~... 答案是多少?在百度上有的只有公式,想知道答案是多少,最好有解题思路,谢谢~ 展开
靖阿9
2011-07-31
知道答主
回答量:59
采纳率:0%
帮助的人:23.2万
展开全部
根据正弦定理 a/sinA=b/sinB=c/sinC
得:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=∏
∵sin[(A+C)/2]=sin[(∏-B)/2]=sin(∏/2-B/2)=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2)
√3*cos(B/2)=4sin(B/2)cos(B/2)
sin(B/2)=(√3)/4
cos(B/2)=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8
更多追问追答
追问
sinA+sinC=2sin[(A+C)/2] * cos[(A-C)/2]
问下啊~这步是怎么出来的?
追答
sin(A + B) + sin(A - B) = sin(A)cos(B) + cos(A)sin(B) + sin(A)cos(B)
- cos(A)sin(B)
= 2sin(A)cos(B) ……………………………… ①

令A = (a + c)/2, B = (a - c)/2 则:
sin(A + B) + sin(A - B) = sin[(a + c)/2 + (a - c)/2]
+ sin[(a + c)/2 - (a - c)/2]
= sin(a) + sin(c);
2sin(A)cos(B) = 2sin[(a + c)/2] * cos[(a - c)/2]

由①得 sin(a) + sin(c) = 2sin[(a + c)/2] * cos[(a - c)/2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式