在△ABC中,a,b,c分别是角A、B、C的对边,设a+c=2b,A-C=60°,求sinB的值
1个回答
展开全部
根据正弦定理 a/sinA=b/sinB=c/sinC
得肆伍:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=∏
∵sin[(A+C)/2]=sin[(∏-B)/2]=滚汪sin(∏/2-B/2)=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√裂备或3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2)
√3*cos(B/2)=4sin(B/2)cos(B/2)
sin(B/2)=(√3)/4
cos(B/2)=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8
得肆伍:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=∏
∵sin[(A+C)/2]=sin[(∏-B)/2]=滚汪sin(∏/2-B/2)=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√裂备或3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2)
√3*cos(B/2)=4sin(B/2)cos(B/2)
sin(B/2)=(√3)/4
cos(B/2)=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8
更多追问追答
追问
sinA+sinC=2sin[(A+C)/2] * cos[(A-C)/2]
问下啊~这步是怎么出来的?
追答
sin(A + B) + sin(A - B) = sin(A)cos(B) + cos(A)sin(B) + sin(A)cos(B)
- cos(A)sin(B)
= 2sin(A)cos(B) ……………………………… ①
令A = (a + c)/2, B = (a - c)/2 则:
sin(A + B) + sin(A - B) = sin[(a + c)/2 + (a - c)/2]
+ sin[(a + c)/2 - (a - c)/2]
= sin(a) + sin(c);
2sin(A)cos(B) = 2sin[(a + c)/2] * cos[(a - c)/2]
由①得 sin(a) + sin(c) = 2sin[(a + c)/2] * cos[(a - c)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询