展开全部
原式={[(y+z)+x][(y+z)-x]}{[x-(y-z)][x+(y-z)]}
=[(y+z)^2-x^2][x^2-(y-z)^2]
=x^2(y+z)^2-x^4-[(y+z)(y-z)]^2+x^2(y-z)^2
=x^2[(y+z)^2+(y-z)^2]-x^4-(y^2-z^2)^2
=x^2(y^2+2yz+z^2+y^2-2yz+z^2)-x^4-(y^4-2y^2z^2+z^4)
=x^2(2y^2+2z^2)-x^4-y^4+2y^2z^2-z^4
=2x^2y^2+2y^2z^2+2x^2z^2-x^4-y^4-z^4
=[(y+z)^2-x^2][x^2-(y-z)^2]
=x^2(y+z)^2-x^4-[(y+z)(y-z)]^2+x^2(y-z)^2
=x^2[(y+z)^2+(y-z)^2]-x^4-(y^2-z^2)^2
=x^2(y^2+2yz+z^2+y^2-2yz+z^2)-x^4-(y^4-2y^2z^2+z^4)
=x^2(2y^2+2z^2)-x^4-y^4+2y^2z^2-z^4
=2x^2y^2+2y^2z^2+2x^2z^2-x^4-y^4-z^4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询