在三角形ABC中,(cosA)^2+(cosB)^2+(cosC)^2=1,则三角形ABC的形状是

妙酒
2011-08-01 · TA获得超过186万个赞
知道顶级答主
回答量:42万
采纳率:93%
帮助的人:20.9亿
展开全部
2cos²A+2cos²B+2cos²C=2
(2cos²A-1)+(2cos²B-1)+2cos²C=0
cos2A+cos2B+2cos²C=0
2cos(A+B)cos(A-B)+2cos²C=0
cosCcos(A-B)-cos²C=0
cosC[cos(A-B)-cosC]=0
cosC[cos(A-B)+cos(A+B)]=0
cosC[2cosAcosB]=0
cosCcosAcosB=0
即A=90°或B=90°或C=90°。
综上所述,此三角形为直角三角形。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式