计算:1/(sin10°)--√3/(cos10°) cos20°cos40°cos80°
两道题(1).1/(sin10°)--√3/(cos10°)(2).cos20°cos40°cos80°...
两道题 (1).1/(sin10°)--√3/(cos10°) (2).cos20°cos40°cos80°
展开
2个回答
展开全部
①解:原式=1/sin10-√3/cos10
=(cos10-√3sin10)/sin10cos10
=2(1/2*cos10-√3/2*sin10)/sin10cos10
=2(sin30cos10-cos30sin10)/sin10cos10=4sin(30-10)/2sin10cos10
=4sin20/sin20=4
②cos20°cos40°cos80°=8sin20°cos20°cos40°cos80°/8sin20°=sin160°/8sin20°=1/8
=(cos10-√3sin10)/sin10cos10
=2(1/2*cos10-√3/2*sin10)/sin10cos10
=2(sin30cos10-cos30sin10)/sin10cos10=4sin(30-10)/2sin10cos10
=4sin20/sin20=4
②cos20°cos40°cos80°=8sin20°cos20°cos40°cos80°/8sin20°=sin160°/8sin20°=1/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询