设f(x)=(-1/3)x^3+(1/2)x^2+2ax,若f(x)在(2/3 ,+∞)上存在单调递增区间,求a的取值范围
2个回答
展开全部
解:答案为a>-1/9
你因该学习导数了吧?对函数f(x)求导得:
f'(x)=-x^2+x+2a
求得f'(x)= -x^2+x+2a>0的区间即可得到函数f(x)的递增区间,
解f'(x)= -x^2+x+2a>0 得:
[1-√(1+8a)]/2<x<[1+√(1+8a)]/2
即函数f(x)在区间[1-√(1+8a)]/2<x<[1+√(1+8a)]/2单调递增,
若f(x)在(2/3 ,+∞)上存在单调递增区间,则有:
区间[1-√(1+8a)]/2<x<[1+√(1+8a)]/2 与区间(2/3 ,+∞)存在交集,从而有:
[1+√(1+8a)]/2 >2/3
即:1+8a>1/9
解得:a>-1/9
你因该学习导数了吧?对函数f(x)求导得:
f'(x)=-x^2+x+2a
求得f'(x)= -x^2+x+2a>0的区间即可得到函数f(x)的递增区间,
解f'(x)= -x^2+x+2a>0 得:
[1-√(1+8a)]/2<x<[1+√(1+8a)]/2
即函数f(x)在区间[1-√(1+8a)]/2<x<[1+√(1+8a)]/2单调递增,
若f(x)在(2/3 ,+∞)上存在单调递增区间,则有:
区间[1-√(1+8a)]/2<x<[1+√(1+8a)]/2 与区间(2/3 ,+∞)存在交集,从而有:
[1+√(1+8a)]/2 >2/3
即:1+8a>1/9
解得:a>-1/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询