方程方程~~~~
一个三位数,三个数位上的数字是1,如果把这个数字1移到最右边,那么所得的六位数是原来数的2倍。求这个数。(列方程)一个六位数的左边第一位数字是1,如果把这个数字1移到最右...
一个三位数,三个数位上的数字是1,如果把这个数字1移到最右边,那么所得的六位数是原来数的2倍。求这个数。(列方程)
一个六位数的左边第一位数字是1,如果把这个数字1移到最右边,那么所得的六位数是原来数的3倍。求原来数。(列方程)
甲、乙、丙三个数的和是255,已知甲数除以乙数,乙数除以丙数都是商5余1.甲、乙、丙三个数各是多少。(方程)
一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半的和。这条大鲨鱼全长多少米?(方程)
小明买故事书和科技书各4本,付出20元,找回5.2元。已知每本科技术2.2元,每本故事书多少元(方程) 展开
一个六位数的左边第一位数字是1,如果把这个数字1移到最右边,那么所得的六位数是原来数的3倍。求原来数。(列方程)
甲、乙、丙三个数的和是255,已知甲数除以乙数,乙数除以丙数都是商5余1.甲、乙、丙三个数各是多少。(方程)
一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半的和。这条大鲨鱼全长多少米?(方程)
小明买故事书和科技书各4本,付出20元,找回5.2元。已知每本科技术2.2元,每本故事书多少元(方程) 展开
3个回答
展开全部
方程:含有未知数的等式,即:⒈方程中必须含有未知数 2.方程式是等式,但等式不一定是方程
未知数:通常设x.y.z为未知数,也可以设别的字母,全部字母都可以。一道题中设两个方程未知数不能一样!
“元”的概念
宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。后人们又设立了地元、人元、泰元来表示未知数,有几元便称为几元方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于现在的“设未知数x。”所以现在在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。
“次”:方程中次的概念和整式的“次”的概念相似。指的是含有未知数的项中,所有未知数指数的总和。而次数最高的项,就是方程的次数。
“解”:方程的解,也叫方程的根。指使等式成立的未知数的值。一般表示为“x=a”,其中x表示未知数,a是一个常数。
解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程。
方程式或简称方程,是含有未知数的等式。方程中,恒等式叫做恒等方程, ;矛盾式叫做矛盾方程,如 。在未知数等于某特定值时,恰能使等号两边的值相等者称为条件方程,例如 ,在 时等号成立。能使方程左右两边相等的未知数的解叫做方程的解。求出方程的解或说明方程无解的这一过程叫做解方程。
编辑本段方程史话
1. 大约3600年前,古代埃及人写在纸草上的数学问题中,就涉及了含有未知数的等式。
2. 公元825年左右,中亚细亚的数学家阿尔-花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。
2. 九章算术之一。
《后汉书·马严传》“善《九章筭术》” 唐 李贤注:“ 刘徽《九章算术》曰《方田》第一,《粟米》第二,《差分》第三,《少广》第四,《商功》第五,《均输》第六,《盈不足》第七,《方程》第八,《句股》(又作《勾股》)第九。”《九章算术·方程》 白尚恕注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。所谓‘方程’即现今的增广矩阵。”
3. “元”的概念:
宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于现在的“设未知数x。”所以现在在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。
编辑本段数学术语
含有未知数的等式叫方程,这是中学中的逻辑定义,方程的定义还有函数定义法,关系定义,而含未知数的等式不一定是方程,如0x=0就不是方程,应该这样定义:
形如f(x1,x2,x3......xn)=g(x1,x2,x3......xn)的等式,其中f(x1,x2,x3......xn)和g(x1,x2,x3......xn)是在定义域的交集内研究的两个解析式,且至少有一的不是常数。
等式的基本性质1
等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)a+c=b+c(2)a-c=b-c
等式的基本性质2
等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c a÷c=b÷c
【方程的一些概念】
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算; 2.转化——计算——结果
例如:
3x=5×6
3x=30
x=30÷3
x=10
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
编辑本段一元一次方程
人教版5年级数学上册第四章会学到,冀教版5年级数学下册第三章会学到,北师大版7年级上册第五章
苏教版5年级下第一章
定义
只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程(linear equation with one unknown)。通常形式是kx+b=0(k,b为常数,且k≠0)。 一般解法步骤
未知数:通常设x.y.z为未知数,也可以设别的字母,全部字母都可以。一道题中设两个方程未知数不能一样!
“元”的概念
宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。后人们又设立了地元、人元、泰元来表示未知数,有几元便称为几元方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于现在的“设未知数x。”所以现在在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。
“次”:方程中次的概念和整式的“次”的概念相似。指的是含有未知数的项中,所有未知数指数的总和。而次数最高的项,就是方程的次数。
“解”:方程的解,也叫方程的根。指使等式成立的未知数的值。一般表示为“x=a”,其中x表示未知数,a是一个常数。
解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程。
方程式或简称方程,是含有未知数的等式。方程中,恒等式叫做恒等方程, ;矛盾式叫做矛盾方程,如 。在未知数等于某特定值时,恰能使等号两边的值相等者称为条件方程,例如 ,在 时等号成立。能使方程左右两边相等的未知数的解叫做方程的解。求出方程的解或说明方程无解的这一过程叫做解方程。
编辑本段方程史话
1. 大约3600年前,古代埃及人写在纸草上的数学问题中,就涉及了含有未知数的等式。
2. 公元825年左右,中亚细亚的数学家阿尔-花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。
2. 九章算术之一。
《后汉书·马严传》“善《九章筭术》” 唐 李贤注:“ 刘徽《九章算术》曰《方田》第一,《粟米》第二,《差分》第三,《少广》第四,《商功》第五,《均输》第六,《盈不足》第七,《方程》第八,《句股》(又作《勾股》)第九。”《九章算术·方程》 白尚恕注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。所谓‘方程’即现今的增广矩阵。”
3. “元”的概念:
宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于现在的“设未知数x。”所以现在在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。
编辑本段数学术语
含有未知数的等式叫方程,这是中学中的逻辑定义,方程的定义还有函数定义法,关系定义,而含未知数的等式不一定是方程,如0x=0就不是方程,应该这样定义:
形如f(x1,x2,x3......xn)=g(x1,x2,x3......xn)的等式,其中f(x1,x2,x3......xn)和g(x1,x2,x3......xn)是在定义域的交集内研究的两个解析式,且至少有一的不是常数。
等式的基本性质1
等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)a+c=b+c(2)a-c=b-c
等式的基本性质2
等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c a÷c=b÷c
【方程的一些概念】
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算; 2.转化——计算——结果
例如:
3x=5×6
3x=30
x=30÷3
x=10
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
编辑本段一元一次方程
人教版5年级数学上册第四章会学到,冀教版5年级数学下册第三章会学到,北师大版7年级上册第五章
苏教版5年级下第一章
定义
只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程(linear equation with one unknown)。通常形式是kx+b=0(k,b为常数,且k≠0)。 一般解法步骤
展开全部
第一题没看懂
2、设原来的六位数减去100000后为m,则:3*(100000+m)=10m+1
3、设甲,乙,丙分别为x,y,z,
则:x+y+z=255,x=5y+1,y=5z+1
4、设全长为l,则:l-3=3+1/2l
5、设每本故事书x元
则:(2.2+x)*4=20-5.2
2、设原来的六位数减去100000后为m,则:3*(100000+m)=10m+1
3、设甲,乙,丙分别为x,y,z,
则:x+y+z=255,x=5y+1,y=5z+1
4、设全长为l,则:l-3=3+1/2l
5、设每本故事书x元
则:(2.2+x)*4=20-5.2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、题目没问题?
2、(x-100000)*10+1=3x
3、x+y+z=255
(x/y)+1=5
(y/x)+1=5
4、x-3=(3+x)/2
5、(2.2+x)*4=20-5.2
2、(x-100000)*10+1=3x
3、x+y+z=255
(x/y)+1=5
(y/x)+1=5
4、x-3=(3+x)/2
5、(2.2+x)*4=20-5.2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询