定义域是什么意思 详细 易懂
2023-06-12 广告
设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
定义域(domain of definition)是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。
扩展资料
f(x)是函数的符号(y),f代表法则,y它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。
f是对应法则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。
参考资料来源:百度百科——定义域
参考资料来源:百度百科——函数定义域
设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
定义域(domain of definition)是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。
扩展资料:
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或淡化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏。
事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效。
还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
参考资料来源:百度百科-定义域
这里 x是自变量,y是函数值,f是对应法则
自变量x的取值范围,就是函数的定义域,通俗地讲,使函数式有意义的x的范围构成定义域
如y=1/x 这里x不能为0 , 定义域是{x| x≠0}
如y=√x 这里根号内要求非负,定义域是{x| x≥0}
当然有的时候题目直接给出定义域,如y=x² x∈[-1,1],那定义域就是[-1,1]