已知数列{an}是首项a1=1,公差大于0的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且b2S2=16
b3S3=72(1)求an和bn(2)另c1=1,c2k=a2k-1,c2k+1=a2k+kbk(k=1,2,3……),求数列{an}的前2n+a项和T2n+1...
b3S3=72
(1)求an和bn
(2)另c1=1,c2k=a2k-1,c2k+1=a2k+kbk(k=1,2,3……),求数列{an}的前2n+a项和T2n+1 展开
(1)求an和bn
(2)另c1=1,c2k=a2k-1,c2k+1=a2k+kbk(k=1,2,3……),求数列{an}的前2n+a项和T2n+1 展开
3个回答
展开全部
(1)
设An = 1+p(n-1), Bn = 2q^(n-1)
则S2 = 2+p, S3 = 3+3p
所以有方程组:(2+p)2q = 16,(3+3p)2q^2 = 72
解得 p = 2,q = 2
所以An = 1+2(n-1) = 2n-1
Bn = 2^n
(2)
T2n+1 = 1+ S2n + (B1+2B2+..+nBn)
其中S2n = a + (a+p) +...+(a+(2n-1)p)
而a=1,p=2
所以S2n = 2n+2x(2n-1+1)x2n/2 = 2n+4n^2
而 (B1+2B2+..+nBn) = (B1+B2+..+Bn) + (B2+...+Bn)+...+Bn
已知Bn = 2^n
因此Bk+...+Bn = 2^k+...+2^n = 2^(n+1) - 2^k
所以(B1+2B2+..+nBn) = (2^(n+1) - 2^1) + (2^(n+1) - 2^2) +... +(2^(n+1) - 2^n)
= n2^(n+1) - (2^1+2^2+...+2^n)
= (n-1)2^(n+1) +2
所以T2n+1 = 1+ 2n+4n^2 + (n-1)2^(n+1) +2
设An = 1+p(n-1), Bn = 2q^(n-1)
则S2 = 2+p, S3 = 3+3p
所以有方程组:(2+p)2q = 16,(3+3p)2q^2 = 72
解得 p = 2,q = 2
所以An = 1+2(n-1) = 2n-1
Bn = 2^n
(2)
T2n+1 = 1+ S2n + (B1+2B2+..+nBn)
其中S2n = a + (a+p) +...+(a+(2n-1)p)
而a=1,p=2
所以S2n = 2n+2x(2n-1+1)x2n/2 = 2n+4n^2
而 (B1+2B2+..+nBn) = (B1+B2+..+Bn) + (B2+...+Bn)+...+Bn
已知Bn = 2^n
因此Bk+...+Bn = 2^k+...+2^n = 2^(n+1) - 2^k
所以(B1+2B2+..+nBn) = (2^(n+1) - 2^1) + (2^(n+1) - 2^2) +... +(2^(n+1) - 2^n)
= n2^(n+1) - (2^1+2^2+...+2^n)
= (n-1)2^(n+1) +2
所以T2n+1 = 1+ 2n+4n^2 + (n-1)2^(n+1) +2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询