已知sinx,cosx是关于x的二次方程2x^2+(√2+1)x+m=0的两根。求cosx/(1-cotx^2)+sinx/(1-tanx^2)的值
2个回答
展开全部
2x^2+(√3+1)x+m=0
sinx+cosx= -(√3+1)/2
sinxcosx=m/2
(sinx)^2+(cosx)^2
=(sinx+cosx)^2-2sinxcosx
=(4+2√3)/4-m=1
m=√3/2
2x^2+(√3+1)x+√3/2=0
(2x+1)(x+√3/2)=0
x=-1/2,或x=-√3/2
sinx=-1/2,cosx=-√3/2 或 sinx=-√3/2,cosx=-1/2
cosx/(1-(cotx)^2)=cosx/[1-(cosx/sinx)^2] =(sinx)^2cosx/[(sinx)^2-(cosx)^2]
sinx/(1-(tanx)^2)=(cosx)^2sinx/[(cosx)^2-(sinx)^2]
cosx/(1-(cotx)^2)+sinx/(1-(tanx)^2)=(cosx-sinx)sinxcosx/[(cosx)^2-(sinx)^2]
=sinxcosx/(sinx+cosx)
=(-1/2)(-√3/2)/(-1/2-√3/2)=2√3/(1+√3)=√3(√3-1)=3-√3
8x^2+(4√2+4)x+(2√2-1)=0
(2x+1)(4x+2√2-1)=0
sinx=-1/2,cosx= -(2√2-1)/4
sinx+cosx= -(√3+1)/2
sinxcosx=m/2
(sinx)^2+(cosx)^2
=(sinx+cosx)^2-2sinxcosx
=(4+2√3)/4-m=1
m=√3/2
2x^2+(√3+1)x+√3/2=0
(2x+1)(x+√3/2)=0
x=-1/2,或x=-√3/2
sinx=-1/2,cosx=-√3/2 或 sinx=-√3/2,cosx=-1/2
cosx/(1-(cotx)^2)=cosx/[1-(cosx/sinx)^2] =(sinx)^2cosx/[(sinx)^2-(cosx)^2]
sinx/(1-(tanx)^2)=(cosx)^2sinx/[(cosx)^2-(sinx)^2]
cosx/(1-(cotx)^2)+sinx/(1-(tanx)^2)=(cosx-sinx)sinxcosx/[(cosx)^2-(sinx)^2]
=sinxcosx/(sinx+cosx)
=(-1/2)(-√3/2)/(-1/2-√3/2)=2√3/(1+√3)=√3(√3-1)=3-√3
8x^2+(4√2+4)x+(2√2-1)=0
(2x+1)(4x+2√2-1)=0
sinx=-1/2,cosx= -(2√2-1)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询