已知函数f(x)=sin(2x+π/6)-cos(2x+π/3)+2cos²x. (1)求f(π/12)的值;
1个回答
展开全部
f(x)=sin(2x+π/6)-cos(2x+π/3)+2cos²x
= sin2x cosπ/6+cos2x sinπ/6-[ cos2x cosπ/3- sin2x sinπ/3] +2cos²x
=√3 sin2x+2cos²x
=√3 sin2x+1+cos2x
=2 sin(2x+π/6)+1,
f(π/12)=2 sin(2*π/12+π/6)+1=√3+1.
f(x)的最大值是3,此时2x+π/6=2kπ+π/2,
x=kπ+π/6,k∈Z.
= sin2x cosπ/6+cos2x sinπ/6-[ cos2x cosπ/3- sin2x sinπ/3] +2cos²x
=√3 sin2x+2cos²x
=√3 sin2x+1+cos2x
=2 sin(2x+π/6)+1,
f(π/12)=2 sin(2*π/12+π/6)+1=√3+1.
f(x)的最大值是3,此时2x+π/6=2kπ+π/2,
x=kπ+π/6,k∈Z.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询