
Sn=1*1/2+3*(1/2)^2+5*(1/2)^3......+(2n-1)*(1/2)^n
2个回答
展开全部
Sn=1/2+3/4+5/8+...+(2n-1)/2^n
Sn/2=1/4+3/8+...+(2n-3)/2^n+(2n-1)/2^(n+1)
Sn-Sn/2=Sn/2=1/2+1/2+1/4+1/8+...+1/2^(n-1)-(2n-1)/2^(n+1)
=-1/2+1+1/2+1/4+...+1/2^(n-1)-(2n-1)/2^(n+1)
=-1/2+[1-(1/2)^n]/(1-1/2)-(2n-1)/2^(n+1)
=-1/2+2-4/2^(n+1)-(2n-1)/2^(n+1)
=3/2-(2n+3)/2^(n+1)
Sn=3-(2n+3)/2^n
Sn/2=1/4+3/8+...+(2n-3)/2^n+(2n-1)/2^(n+1)
Sn-Sn/2=Sn/2=1/2+1/2+1/4+1/8+...+1/2^(n-1)-(2n-1)/2^(n+1)
=-1/2+1+1/2+1/4+...+1/2^(n-1)-(2n-1)/2^(n+1)
=-1/2+[1-(1/2)^n]/(1-1/2)-(2n-1)/2^(n+1)
=-1/2+2-4/2^(n+1)-(2n-1)/2^(n+1)
=3/2-(2n+3)/2^(n+1)
Sn=3-(2n+3)/2^n
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询