∫(x^2+a^2)^1/2dx 50
我看到有人说用sht代换x会很简单,但是我还是算不出来,哪位数学帝帮帮忙。。。。如果是三角代换就不用发了,我会了...
我看到有人说用sht代换x会很简单,但是我还是算不出来,哪位数学帝帮帮忙。。。。
如果是三角代换就不用发了,我会了 展开
如果是三角代换就不用发了,我会了 展开
2个回答
展开全部
解:设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,√(x²-a²)=atanu,
secu=x/a, tanu=[√(x²-a²)]/a.
代入原式得:∫[√(x²-a²)]dx=a²∫tan²usecudu=a²∫secu(sec²u-1)du=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
打的累的很 望您满意 请采纳
secu=x/a, tanu=[√(x²-a²)]/a.
代入原式得:∫[√(x²-a²)]dx=a²∫tan²usecudu=a²∫secu(sec²u-1)du=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
打的累的很 望您满意 请采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询