已知向量a=(cos3x,sin3x),b=(cosx,sinx),x∈[-π/2,π/2]且f(x)=a乘b,g(x)=a+b的绝对值
1个回答
展开全部
1. f(x)=cos2x; g(x)=2cosx 2. [-π/4, π/4]
f(x)=a*b=(cos3x, sin3x)*(cosx, sinx)=cosxcos3x+sinxsin3x=cos(3x-x)=cos2x
g(x)=|a+b|=|(cos3x, sin3x) + (cosx, sinx)|
= |(cos3x+cosx, sin3x+sinx)|
=√[(cos3x+cosx)² + (sin3x+sinx)²]
=√(cos²3x+2cos3xcosx+cos²x + sin²3x+2sin3xsinx+sin²x)
=√(2+2cos2x)
=√[2(1+cos2x)]
=√(4cos²x)
x∈[-π/2, π/2],所以,cosx≥0,所以,g(x)=2cosx
f(x)的单调递增区间,即-π/2 ≤ 2x ≤ π/2,即-π/4 ≤ x ≤ π/4,写成区间即为[-π/4, π/4]
f(x)=a*b=(cos3x, sin3x)*(cosx, sinx)=cosxcos3x+sinxsin3x=cos(3x-x)=cos2x
g(x)=|a+b|=|(cos3x, sin3x) + (cosx, sinx)|
= |(cos3x+cosx, sin3x+sinx)|
=√[(cos3x+cosx)² + (sin3x+sinx)²]
=√(cos²3x+2cos3xcosx+cos²x + sin²3x+2sin3xsinx+sin²x)
=√(2+2cos2x)
=√[2(1+cos2x)]
=√(4cos²x)
x∈[-π/2, π/2],所以,cosx≥0,所以,g(x)=2cosx
f(x)的单调递增区间,即-π/2 ≤ 2x ≤ π/2,即-π/4 ≤ x ≤ π/4,写成区间即为[-π/4, π/4]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询